512 research outputs found

    Vasculitis, Atherosclerosis, and Altered HDL Composition in Heme-Oxygenase-1-Knockout Mice

    Get PDF
    To elucidate roles of heme oxygenase-1 (HO-1) in cardiovascular system, we have analyzed one-year-old HO-1-knockout mice. Homozygous HO-1-knockout mice had severe aortitis and coronary arteritis with mononuclear cellular infiltration and fatty streak formation even on a standard chow diet. Levels of plasma total cholesterol and HDL were similar among the three genotypes. However, homozygous HO-1-knockout mice had lower body weight and plasma triglyceride. HO-1-deficiency resulted in alteration of the composition of HDL. The ratio of apolipoprotein AI to AII in HO-1-knockout mice was reduced about 10-fold as compared to wild-type mice. In addition, paraoxonase, an enzyme against oxidative stress, was reduced less than 50% in HO-1-knockout mice. The knockout mice also exhibited significant elevation of plasma lipid hydroperoxides. This study using aged HO-1-knockout mice strengthened the idea that HO-1 functions to suppress systemic inflammation in artery wall and prevents plasma lipid peroxidation

    Maximal information component analysis: a novel non-linear network analysis method.

    Get PDF
    BackgroundNetwork construction and analysis algorithms provide scientists with the ability to sift through high-throughput biological outputs, such as transcription microarrays, for small groups of genes (modules) that are relevant for further research. Most of these algorithms ignore the important role of non-linear interactions in the data, and the ability for genes to operate in multiple functional groups at once, despite clear evidence for both of these phenomena in observed biological systems.ResultsWe have created a novel co-expression network analysis algorithm that incorporates both of these principles by combining the information-theoretic association measure of the maximal information coefficient (MIC) with an Interaction Component Model. We evaluate the performance of this approach on two datasets collected from a large panel of mice, one from macrophages and the other from liver by comparing the two measures based on a measure of module entropy, Gene Ontology (GO) enrichment, and scale-free topology (SFT) fit. Our algorithm outperforms a widely used co-expression analysis method, weighted gene co-expression network analysis (WGCNA), in the macrophage data, while returning comparable results in the liver dataset when using these criteria. We demonstrate that the macrophage data has more non-linear interactions than the liver dataset, which may explain the increased performance of our method, termed Maximal Information Component Analysis (MICA) in that case.ConclusionsIn making our network algorithm more accurately reflect known biological principles, we are able to generate modules with improved relevance, particularly in networks with confounding factors such as gene by environment interactions

    Using genetic markers to orient the edges in quantitative trait networks: The NEO software

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systems genetic studies have been used to identify genetic loci that affect transcript abundances and clinical traits such as body weight. The pairwise correlations between gene expression traits and/or clinical traits can be used to define undirected trait networks. Several authors have argued that genetic markers (e.g expression quantitative trait loci, eQTLs) can serve as causal anchors for orienting the edges of a trait network. The availability of hundreds of thousands of genetic markers poses new challenges: how to relate (anchor) traits to multiple genetic markers, how to score the genetic evidence in favor of an edge orientation, and how to weigh the information from multiple markers.</p> <p>Results</p> <p>We develop and implement Network Edge Orienting (NEO) methods and software that address the challenges of inferring unconfounded and directed gene networks from microarray-derived gene expression data by integrating mRNA levels with genetic marker data and Structural Equation Model (SEM) comparisons. The NEO software implements several manual and automatic methods for incorporating genetic information to anchor traits. The networks are oriented by considering each edge separately, thus reducing error propagation. To summarize the genetic evidence in favor of a given edge orientation, we propose Local SEM-based Edge Orienting (LEO) scores that compare the fit of several competing causal graphs. SEM fitting indices allow the user to assess local and overall model fit. The NEO software allows the user to carry out a robustness analysis with regard to genetic marker selection. We demonstrate the utility of NEO by recovering known causal relationships in the sterol homeostasis pathway using liver gene expression data from an F2 mouse cross. Further, we use NEO to study the relationship between a disease gene and a biologically important gene co-expression module in liver tissue.</p> <p>Conclusion</p> <p>The NEO software can be used to orient the edges of gene co-expression networks or quantitative trait networks if the edges can be anchored to genetic marker data. R software tutorials, data, and supplementary material can be downloaded from: <url>http://www.genetics.ucla.edu/labs/horvath/aten/NEO</url>.</p

    A comparison between whole transcript and 3' RNA sequencing methods using Kapa and Lexogen library preparation methods.

    Get PDF
    Background3' RNA sequencing provides an alternative to whole transcript analysis. However, we do not know a priori the relative advantage of each method. Thus, a comprehensive comparison between the whole transcript and the 3' method is needed to determine their relative merits. To this end, we used two commercially available library preparation kits, the KAPA Stranded mRNA-Seq kit (traditional method) and the Lexogen QuantSeq 3' mRNA-Seq kit (3' method), to prepare libraries from mouse liver RNA. We then sequenced and analyzed the libraries to determine the advantages and disadvantages of these two approaches.ResultsWe found that the traditional whole transcript method and the 3' RNA-Seq method had similar levels of reproducibility. As expected, the whole transcript method assigned more reads to longer transcripts, while the 3' method assigned roughly equal numbers of reads to transcripts regardless of their lengths. We found that the 3' RNA-Seq method detected more short transcripts than the whole transcript method. With regard to differential expression analysis, we found that the whole transcript method detected more differentially expressed genes, regardless of the level of sequencing depth.ConclusionsThe 3' RNA-Seq method was better able to detect short transcripts, while the whole transcript RNA-Seq was able to detect more differentially expressed genes. Thus, both approaches have relative advantages and should be selected based on the goals of the experiment

    High-Density Genotypes of Inbred Mouse Strains: Improved Power and Precision of Association Mapping.

    Get PDF
    Human genome-wide association studies have identified thousands of loci associated with disease phenotypes. Genome-wide association studies also have become feasible using rodent models and these have some important advantages over human studies, including controlled environment, access to tissues for molecular profiling, reproducible genotypes, and a wide array of techniques for experimental validation. Association mapping with common mouse inbred strains generally requires 100 or more strains to achieve sufficient power and mapping resolution; in contrast, sample sizes for human studies typically are one or more orders of magnitude greater than this. To enable well-powered studies in mice, we have generated high-density genotypes for ∼175 inbred strains of mice using the Mouse Diversity Array. These new data increase marker density by 1.9-fold, have reduced missing data rates, and provide more accurate identification of heterozygous regions compared with previous genotype data. We report the discovery of new loci from previously reported association mapping studies using the new genotype data. The data are freely available for download, and Web-based tools provide easy access for association mapping and viewing of the underlying intensity data for individual loci

    Allele-specific expression and eQTL analysis in mouse adipose tissue.

    Get PDF
    BackgroundThe simplest definition of cis-eQTLs versus trans, refers to genetic variants that affect expression in an allele specific manner, with implications on underlying mechanism. Yet, due to technical limitations of expression microarrays, the vast majority of eQTL studies performed in the last decade used a genomic distance based definition as a surrogate for cis, therefore exploring local rather than cis-eQTLs.ResultsIn this study we use RNAseq to explore allele specific expression (ASE) in adipose tissue of male and female F1 mice, produced from reciprocal crosses of C57BL/6J and DBA/2J strains. Comparison of the identified cis-eQTLs, to local-eQTLs, that were obtained from adipose tissue expression in two previous population based studies in our laboratory, yields poor overlap between the two mapping approaches, while both local-eQTL studies show highly concordant results. Specifically, local-eQTL studies show ~60% overlap between themselves, while only 15-20% of local-eQTLs are identified as cis by ASE, and less than 50% of ASE genes are recovered in local-eQTL studies. Utilizing recently published ENCODE data, we also find that ASE genes show significant bias for SNPs prevalence in DNase I hypersensitive sites that is ASE direction specific.ConclusionsWe suggest a new approach to analysis of allele specific expression that is more sensitive and accurate than the commonly used fisher or chi-square statistics. Our analysis indicates that technical differences between the cis and local-eQTL approaches, such as differences in genomic background or sex specificity, account for relatively small fraction of the discrepancy. Therefore, we suggest that the differences between two eQTL mapping approaches may facilitate sorting of SNP-eQTL interactions into true cis and trans, and that a considerable portion of local-eQTL may actually represent trans interactions

    Genetic network identifies novel pathways contributing to atherosclerosis susceptibility in the innominate artery

    Get PDF
    Abstract Background Atherosclerosis, the underlying cause of cardiovascular disease, results from both genetic and environmental factors. Methods In the current study we take a systems-based approach using weighted gene co-expression analysis to identify a candidate pathway of genes related to atherosclerosis. Bioinformatic analyses are performed to identify candidate genes and interactions and several novel genes are characterized using in-vitro studies. Results We identify 1 coexpression module associated with innominate artery atherosclerosis that is also enriched for inflammatory and macrophage gene signatures. Using a series of bioinformatics analysis, we further prioritize the genes in this pathway and identify Cd44 as a critical mediator of the atherosclerosis. We validate our predictions generated by the network analysis using Cd44 knockout mice. Conclusion These results indicate that alterations in Cd44 expression mediate inflammation through a complex transcriptional network involving a number of previously uncharacterized genes
    corecore